

AN05220077 V1.01 Date: 2014/07/24

产品应用笔记

广州致远电子股份有限公司

目 录

1.	STC	系列单片机简 介	1
2.	AK1	0Pro-4P 简介	
3.	准备	条件	4
	3.1	准备 STC15F2K60S2 芯片	
	3.2	安装 KFlashPro 软件	
	3.3	连接 STC15F2K60S2 至 AK100Pro-	4P5
4.	基本	烧写	7
	4.1	创建工程	7
	4.2	参数配置	7
		4.2.1 硬件选择	7
		4.2.2 串口设置	8
		4.2.3 界面配置	
		4.2.4 选项配置	9
	4.3	烧写配置	
		4.3.1 程序代码烧写	
		4.3.2 EEPROM 数据烧写	
	4.4	进行烧写	
	4.5	STC 多文件烧写	
5.	高级	烧写	
	5.1	量产烧写配置	
6.	技术	支持	
7.	订购	信息	

1. STC 系列单片机简介

STC (宏晶科技) 是新一代增强型 8 位单片机微型计算机标准的制定者和领导产商, 致力于提供处于业内领导地位的, 高性能 STC 系列 MCU 和 SRAM。部分 STC 芯片特点: 89/90 系列:工作频率 0~40M 相当于 8051 的 0~80M, 即 12 分频/6 分频可选, FLASH 程序存储 4K-64K。11/10 系列:相对于 89 系列,速度更快,可以达到 1T,速度是普通 8051 的 8~12 倍,并具有超强抗干扰能力,增加了掉电唤醒专用定时器。15F 系列:是 STC 目前最新的系列,有 STC 最少引脚 8 引脚的单片机,并采用精度更高、可通过 ISP 调节的内部振荡器。

STC单片机的 Flash 编程接口多支持串口,通过串口进行编程不仅便捷,通用性高,STC 通过串口的 ISP 烧写自成一套协议,芯片出厂后内部已经嵌入了 IAP 的代码。AK100 Pro -4P 同样也支持通过 UART 的 ISP 烧写,操作简便,甚至 AK100Pro-4P 支持多通道烧写,大大提高了烧写的速度。

本文档以对 STC15F2K60S2 操作为例子,通过 AK100 Pro -4P 一步步引领您走进 STC 各系列芯片的 ISP 烧写,其内部结构框图见图 1.1 (来源于芯片数据手册)。

图 1-1 STC15F2K60S2 系列内部结构框图

2. AK100Pro-4P 简介

AK100Pro-4P 是广州致远电子股份有限公司开发的专业型量产在线编程器,能同时实现 4 个通道同时在线编程,为工厂量产烧写提供完善的解决方案。

图 2-1 AK100Pro-4P 整体结构

其主要功能特点有:

- 量产型在线编程器,可自动同时编程 4 块目标板;
- 全自动编程操作,即插即编,不需要操作鼠标和按键;
- 可制作加密的量产工程, 限制用户的烧写次数, 避免烧写文件的泄漏;
- 所有编程接口均内置高速隔离,适合高干扰的工业环境;
- 支持加载网络工程,可绝对保证多工位烧录同一份代码;
- 具备文件烧写与校验、数据擦除、数据查空和数据读取等通用功能;
- 支持 ID 号烧写;
- 烧写文件的分段配置,可针对单独的段做单独的配置;
- 序列的操作方式,比如擦除,可以擦出一个扇区序列: 1-3、5-8、K-K+N;
- 源缓冲区查看功能,可查看当前烧写文件列表在整个算法区间中的关系及对应位置;
- 读取缓冲区,可比较校验操作、读取操作与源缓冲区数据的对应关系
- 创新的云烧录组件,远程在线升级用户固件程序。

AK100Pro-4P 提供 4 路烧写接口,能同时烧写 4 颗芯片,对于烧写耗时较长的芯片时,大大提到了烧写效率。其内嵌的高速 USB 及 FPGA 引擎,使得任何一路接口烧写速度都超过 USB 转串口的烧写速度。

产品应用笔记 Date: 2014/07/24

图 2-2 AK100Pro-4P 正面提供 4 路编程接口

图 2-3 AK100Pro-4P 背面图

图 2-4 AK100Pro-4P 俯视图

3. 准备条件

在阅读下面的内容前,你需要准备 AK100Pro-4P、STC15F2K60S2 芯片(连接板子)、 KFlashPro 软件。

3.1 准备 STC15F2K60S2 芯片

该系列的芯片或是开发板网上均有卖,需要预留的引脚为 P3.0 (RxD)、P3.1 (TxD)、P3.2、P3.3 (建议 P3.2/P3.3 引脚接地,因为部分芯片在上一次配置的时候配置了必须要 P3.2/P3.3 接入低电平才能进入 ISP 模式)。

3.2 安装 KFlashPro 软件

最新版本的 KFlashPro 软件可从广州致远电子官方网站(<u>www.zlg.cn</u>)下载。安装完成后, 启动软件界面如下。

图 3-1 KFlashPro 软件

然后,接上电源,连接 AK100Pro-4P 的 USB 至 PC 机。打开 KFlashPro 安装目录\ TKScope\Driver\AK100Pro-4P Driver。请根据操作系统类型,决定运行哪一个 USB 驱动自动 安装程序(DrvSetup_x64.exe/DrvSetup_x86.exe)。

图 3-2 USB 驱动安装

驱动安装完成后,将 STC15F2K60S2 模块或 Demo 板连接至 AK100Pro-4P。

3.3 连接 STC15F2K60S2 至 AK100Pro-4P

AK100Pro-4P的接口提供了 20Pin 的调试烧写接口,而对于该调试接口,可以采用串口的标准进行接线。

将调试接口分别与 STC15F2K60S2 使用 3 根信号进行连接。各个管脚连接如图 3.4 所示。

图 3-1 STC15F2K60S2 编程接口引脚定义

各引脚定义如表 3.1 所示。

表 3.1 STC15F2K60S2 编程接口

序号	管脚名称	IO 类型	功能描述
			目标板电压检测信号, 连接至 STC15F2K60S2
1	Vref	输入	的工作电源。用于检测设备目标板的工作电压,
			使得编程器能输出合适的电平
5	TXD	输入	串口接收信号,连接至 STC15F2K60S2 的 RXD。
13	RXD	输出	串口发送信号,连接至 STC15F2K60S2 的 TXD。
	P1.0/P3.2(芯 片)	ISP 判断	若在上次烧写的时候选择了"P1.0/P1.1为0/0则
			需要接地,冷启动后才能进入ISP代码。STC15系
			列的判断引脚为 P3.2/P3.3
	P1.1/P3.3(芯 片)		若在上次烧写的时候选择了"P1.0/P1.1为0/0则
		ISP 判断	需要接地,冷启动后才能进入ISP代码。STC15系
			列的判断引脚为 P3.2/P3.3

其中芯片上的 P3.2 引脚和 P3.3 引脚在特殊的情况下,需要接地才能进入 ISP 的模式, 主要原因在 ISP 烧写时,有个可选项"下次冷启动的时,P3.2/P3.3 为 0/0 才能下载模式", 若是这个选项在上次烧写的时候,是勾选上的,那么这次的烧写就必须需要 P3.2/P3.3 两 个引脚接地才能正常烧写。

6

Rev 1.01

4. 基本烧写

4.1 创建工程

打开 KFlashPro 软件,如下图所示。点击【新建】按钮,创建新的工程。用户可根据 需要可以创建加密工程,确保工程的安全性。

新建工程		×
工程名:	hello	
工程路径:	E:\demo	
工程类型:	JTAG 💌	
🔲 创建加密工制	Ŧ	
工程密码:		
再输入一次:	确定	取消

图 4-1 创建工程

4.2 参数配置

点击【确定】按钮后,这时弹出设置对话框,用于配置待烧写芯片的信息。

H S AKIOPIO MC2130 MI		
硬件选择	芯片选择和仿真器硬件选择(Device & Hardware Type) TKScope仿真功能强大,能仿真众多型号的MCU,且型号不断增加.	-
串口设置	因此,用户在使用前必须正确选择芯片型号和仿真器硬件类型. TKScope仿真器硬件结构采用:仿真器+POD适配器+芯片的结构, 用口可以相求自己的位置型硬件推迟和相要位信め芯片的UN选择。	
程序烧写	(1)仿真器类型的选择 在IEmulator TypeI的下拉栏中选择你当前的仿真器型号.	=
硬件自检	仿真器的型号在外壳的显眼位置都有标注. (2)适配器POD类型的选择	
	在IPOD Type」的下拉住中选择你当前连接仿具器主机的POD型号。 每种POD的型号都会在POD的实体上明显的标注,用户可以查看。 (3) 价直芯片的选择	
	(2)所是10月20日 芯片的型号选择可以通过左面的树状结构进行选择,芯片按照厂家 进行排序,用户可以现找到芯片的厂家,然后点开该厂家的目录夹,	
	找到符合要求的芯片型号, 双击该芯片即选中该芯片为仿真芯片. 如果双击选择后, 在[Device & information]中并没有显示出正确	-
	加载 保存 缺省 确认 取消	搜索

图 4-2 配置界面

4.2.1 硬件选择

点击硬件选择,选择正确芯片型号和在线编程器型号。可以使用右上角的器件过滤窗口, 输入芯片型号,系统会自动找到芯片,选择 STC15F2K60S2 下的 AK100Pro-UART 即可。

设备选择	器件过滤	
AK100pro 💌	STC15F2K6052 / STC	
器件选择	可以输入需要排	索的芯片类型
 ● ■ STC15F2K1652 ● ■ STC15F2K252 ● ■ STC15F2K452 ● ■ STC15F2K452 ● ■ STC15F2K452 ● ■ STC15F2K452 ● ■ STC15F2K652 ■ STC15F2K652 ■ ■ STC15F2K652 ■ IRC15F2K632 ● ■ IRC15F2K6352 ● ■ IRC15F2K635 ● ■ STC15F2K455 	1. 目标芯片: STC15F2K6052 / STC STC15F2K0852 STC15F2K1652 STC15F2K1452 STC15F2K3522 STC15F2K4052 STC15F2K1452 STC15F2K652 STC15F2K1652 IAP15F2K6152 IRC15F2K6352 IAP15F2K615 STC15F2K1455 STC15L2K0852 STC15L2K1652 STC15L2K452 STC15L2K3522 STC15L2K1652 STC15L2K452 STC15L2K3532 IAP15L2K615 STC15L2K6152 IRC15L2K3532 IAP15L2K615 STC15L2K453 # 始强型0051内核微控制器; * 8051指令兼容;	H

图 4-3 硬件选择

之后,驱动将为用户提供默认的配置参数,在大多数情况下,用户无需要修改。

4.2.2 串口设置

串口设置主要配置用于配置烧写时所用的波特率,STC 各系列芯片的串口支持最高 115200bps,15 以前的系列(如 12 系列,89/90 系列等)部分芯片不支持过高的波特率,需要 选择合适的波特率。串口号未使用,不必设置。

串口设置	×
串口号 1 ▼	确定
波特率 115200 ▼	取消

图 4-4 串口设置

4.2.3 界面配置

在配置界面上有众多的按键,可以支持不同产商芯片的基本功能,但是 STC 各系列的 芯片支持一个功能"烧写",可以进入左侧的"高级配置"-->"工程配置"把其他的功能按 键给隐藏了。

🎼 KFlashPro — E:\demo\hello\hello.fpm		
文件(日 视图(V) 工具 插件 设置	解助(<u>H</u>)	STC只需要使用烧写功能
** 2010 100 100 100 100 100 100 100 100 10	①	
基本配置 *	选择烧写算法: 89	9C(LE)xx 32KB Flash+29KB 🔻 选择烧写文件: 🛄
⅔ 烧写配置	烧写文件列表	
2 校验配置	是否烧写该文件 文	2件类型 文件路径
	0 Int	tel Hex File E:\recv\GPIO.hex
◎ 務除配置	1 Int	tel Hex File C:\Documents and Settings\xuzhihui\桌面\123165.hex
查空配置	2 Int	tel Hex File C:\Documents and Settings\xuzhihui\星国\SIC文档\test-hex\test_p0_p1_
」 大 读取配置		
组合配置		
设备配置 关		
高級配置	当前文件段落配置:	
	索引 段起始地址	b 段长度 地址配置(双击配置串修改)
🔝 量产配置 由此进入	可以把不需要的功能按键给	合屏蔽了
₽ ID号配置		
■ 终端配置		

图 4-5 KFlashPro 界面

文件(E)	视图(V)	工具 打	插件 设置	帮助(日)		
^米 新建	〇〇 打开	(1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	L程保祥	① ●		
基本配置 *			\$			
秋 烧耳	副置			工程标题栏定制标题: KFlashPro		
副校園				工程创建者: user		
🗟 擦腳	余配置			同 启用加密工程 密码设置 生成授权文件		
<u>ē</u> ±	空配置					
<u></u> , 读明	如配置					
组合配置	E		*	15 (J-1457)50		
设备配置	ł		*	∰TF1=100頁 所有项: 可用项:		
高级配置	1		*			
I I	呈配置			校验		
量量	≃配置					
	引配置			 当, 读取 ジ 烧写枝验 		
国 终端	≠配署			⑦ 擦除查空 × <		

图 4-6 屏蔽不用的功能

4.2.4 选项配置

在烧写之前,要先对选项进行配置,通过选项的配置,可以把芯片预设定为自己所期望的功能。这些功能可以通过左侧的"设备配置"→"程序烧写",然后选择对应的算法,点击"选项",就可以看到芯片支持的配置了。

ZL	G	钗	jπ	电	子

gram Option		
ardware option		
IRC FRQ		
FRQ Number	11.0592MHz	
After System Reset -		
SYS Clock	🔘 External crystal	Internal R/C (IRC)
Reset Delay	🔘 Normal delay	Normal+Ext delay
TxD/P3.7, RxD/P3.6	🔘 As independent I/O	🖲 P3.7 Output P3.6 state, change VART1 pins
P3. 7	Idirectional I/O	Strong Push-pull output
Reset Pin Function	🔘 Reset	Normal I/O
P2.0	🔘 Output low	💿 Output high
When Low Voltage		
EEPROM Operation	C Allow	Not allow
Low Voltage Trigger	Reset	🔘 Only an interrupt
Low Voltage Value	3.82V	
Next ISP Condition a	and Control	
P3.2/P3.3 to ISP	🔘 Must be O/O	◙ No concern I/O state
RS485 when ISP	🔘 Control RS485	◎ No control RS485
缺省		确定 取消

图 4-7 选项配置界面

4.3 烧写配置

AK100Pro-4P 与芯片参数设置完毕之后,需要对烧写文件进行设置。点击下图所示左 边导向栏,进入基本配置下的烧写配置。点击【选择烧写文件】旁的按钮,将烧写文件加载 进来。

基本配置	 法择烧写算法: 烧写文件列表 		LPC12xx 128KB Flash 🔹 选择烧写文件:		
 校验配置 		是否烧写该文件 ▼ 0	文件类型 Intel Hex File	文件路径 E:\recv\GPIO.hex	
组合配置	*				
设备配置	¥				
高级配置	*	当前文件段潛配置	tu -		

图 4-8 添加烧写文件

若用户有需要,还可以对烧写文件进行地址配置和对缓冲区数据修改。

图 4-9 配置段缓冲区

因为 STC 烧写时,要是有需要烧写的 EEPROM,则必须同时跟程序代码同时烧写,否则,会把 FLASH 给清空也就是把之前烧写的程序代码给清空掉,或是先烧写 EEPROM 的数据代码,然后再往 FLASH 烧写程序代码。

4.3.1 程序代码烧写

烧写程序代码时,需要注意的是,程序代码必须在 FLASH 的 0 地址开始,详细的操作 见图 4-10。

2 Intel Hex File C:\Documents and Settings\xuzhihui\桌面\STC文档\test-hex\test_p0_p1_p2_p3.hex ##址配置窗 ## 当前文件段落配置: 成記始地址: 0x0000000 段記始地址: 0x0000000 服認始地址: 0x0000000 度時 0x560 建築其: 15F(L)2KxxS2 60KB Flash+▼ 2. 在段落配置可以看到基本信息 配置描述: Algorithm0:[15F(L)2KxxS2 60KB Flash+1KB EEPROM(ADDR:0xF000)][(0] 2. 程度件因此看得意	是否烧写该文件 ▼ 0 □ 1	文件类型 Intel Hex File Intel Hex File	文件路径 E:\recv\GPIO.hex C:\Documents and Setti	1、选择待烧写的程序 ings\xuzhihui\桌面\123165.hex	代码,在左侧勾边	<u>先上</u>	
	2	Intel Hex File	C:\Documents and Setti	ings\xuzhihui\桌面\STC文档\te	st-hex\test_p0_p1_p2	_p3.hex	删除
			地址配置窗				上移
2、在段落配置可以看到基本信息 ^{配置描述} : Algorithm0:[15F(L)2KxxS2 60KB Flash+1KB EEPROM(ADDR:0xF000)][(0] 双击该信息条弹出地站配置资	当前文件段落配置 案引 段起始 マ 0 0x0000	t: 地址 段长5 10000 1376	段起始地址: 在 达择算法:	: 0x0000000 0x0000000 15F(L)2KxxS2 60KB Flas	段初始长度: 抽取长度: 1+ ▼ 烧写地址:	0x560 0x560	配置选中
	2、在段 双击该(落配置可以看 言息条弹出地:	行到基本信息 ^{配置描述:} 址配置窗	Algorithm0:[15F(L)2KxxS	2 60KB Flash+1KB E 取消	EPROM(ADDR:0xF000)]](0 3、程序代码必须确	服改地址为0

图 4-10 程序代码烧写配置

4.3.2 EEPROM 数据烧写

EEPROM 的数据烧写比较特殊,若是单独烧写的话,会把程序代码空间给清空,除非 是先烧写 EEPROM 代码,然后再烧写程序代码,不过,这是要确保"程序烧写"→"选项" 里面必须勾选上"下次 ISP 操作时不擦除 EEPROM",否则下次烧写操作时,又会把 EEPROM

产品应用笔记	©20
Date: 2014/07/24	

数据给清空。

这个举例如何同时烧写程序代码和 EEPROM 数据。准备一个程序文件,一个是 EEPROM 数据文件,两个都勾选上,如图 4-11 中,烧写文件列表中,"0"号文件为程序代码,"1"号文件为 EEPROM 数据,则"0"号文件的配置跟 4.3.1 中的流程是一样的。"1"号文件为 EEPROM 数据,其配置流程类似,唯一不同的是烧写地址有所不同,其设置参考图 4-11。

选择烧写算法:	15F(L)2KxxS2 6	50KB Flash+1! ▼ 选择烧写文件:			
烧写文件列表					
是否烧写该文件	文件类型	文件路径			
✓ 0	Intel Hex File	E:\recv\GPIO.hex			
✓ 1	Intel Hex File	I Hex File C:\Documents and cettings\xuzhihui\真的STC文档\test-hex\test_p0_p1_p2_p3.hex			
			加除		
			上移		
		地址配置窗	下移		
当前文件段落配置 家引 段起始 ☑ 0 0x0000	t: 地址 段长周 10000 90	段起始地址: 0x0000000 段初始长度: 0x5A 描取地址: 0x0000000 抽取长度: 0x5A 透理算法: 15E(1)2Kyx52 60KB Elash+ 文 修写批址: 0x0000E000	配置选中项		
2、双击段乘 配置窗口	落配置信息,引	单出地址 配置描述: Algorithm0:[15F(L)2KxxS2 60KB Flash+1KB EEPROM(反DR:0xF000)])(0)			
			〕 烧		

图 4-11 EEPROM 烧写配置

4.4 进行烧写

所有配置完成后,即可点击操作栏上的【烧写】按钮启动烧写。STC 各系列的芯片在 按下"烧写"后,需要再对芯片进行冷启动后进入 boot 检测通讯判断时候进入 ISP,所以在 按下"烧写"之后,需要对芯片重新上电才会进入到 ISP,如图 4-12。

图 4-12 启动烧写

点击烧写后,会弹出一个等待上电的进度条,该进度条有走两遍,分别以不同的握手波 特率(第一次握手采用较高的波特率,该波特率并不影响烧写时的波特率)走一遍,在此期 间要对芯片进行重新上电才能成功进入烧写,如图 4-13

Flash 编程 算法 0			×
Flash 编程 算法 0	等待上电		
		取消	

图 4-13 需要给芯片重新上电

产品应用笔记	
Date: 2014/07/24	

因 STC 芯片的特殊性,对芯片初始化完成之后,会进入芯片的烧写如图 4-14 所示。

图 4-14 Flash 编程信息提示

烧写成功之后,会显示一个绿色的勾,如图 4-15 所示

选择烧写算法: 烧写文件列表	15F(L)2KxxS2	50KB Flash+11 💌 选择椭萼文件: 📖	
是否烧写该文件	文件类型	文件路径	
✓ 0	Intel Hex File	E:\recv\GPIO.hex	
✓ 1	Intel Hex File	C:\Documents and Settings\xuzhihui\桌面\STC文档\test-hex\test_p0_p1_p2_p3.hex	
			删除
			上移
			下移
当前文件段落配置 案引 段起始	ł: 地址 殷长。	2 地址配置(双由配置串修改)	配置选中项 查看段内容
		· · · · · · · · · · · · · · · · · · ·	
		,	
		·	

图 4-15 烧写成功

4.5 STC 多文件烧写

ZLG 致远电子

对于需要把代码定位到固定区域的文件,比如说,有两个 EEPROM 的文件需要烧写, 或是对于 IAP 类型芯片(Flash 可以当 EEPROM 使用)的烧写,只要把文件配置好指定的 位置,指定哪里,烧到哪里。以 IAP15F2K61S2 为例子,在原有的配置下,把一个 8k 的文 件添加到 0x8000 的位置,其配置如图 4-16 所示。

呈省院与该又件	: 文件类	型	文件路	径					
0	Intel H	lex File	E:\recv	\GPIO.hex					
1 Intel Hex File C:\Docu				uments and Settin	ments and Settings\xuzhihui\桌面\STC文档\test-hex\test_p0_p1_p2_p3.hex				
✓ 2 Binary,Dat File C:\Dor			C:\Doc	uments and Settin	gs\xuzhihui\桌面\STC文档\	test-hex\PENDB-8k.b	in		
				地址配置窗			-×		
				段起始地址:	0x0000000	段初始长度:	0x2000		
				抽取地址:	0x0000000	抽取长度:	0x2000		
前文件段落配	置:								
索引 段起対	台地址	段长度		选择算法:	15F(L)2KxxS2 61KB Flas	;h ▼ 烧写地址:	0x00008000		
🗸 0 0x000	00000	8192							
				配置描述:	Algorithm0:[15F(L)2Kxx	S2 61KB Flash1(0x000	00000:8192)[0:8192]=>0		

图 4-16 多文件烧写配置

产品应用笔记	©2013 Guangzhou ZH	IYUAN Electronics Stock Co., Ltd.
Date: 2014/07/24	13	Rev 1.01

在烧写的过程中,其进度条的显示方式还是一样的,如图 4-17 和 4-18 所示。

图 4-17 多文件烧写 1

Flash 编程 算法	ŧ 0	×
Flash 编程 算法	0 9,728 / 10,240 字节, 速度=893 字节/秒, 耗时10秒. 编程等待 58 %	
	取消	

图 4-18 多文件烧写 2

注意:进度条中提示速度并非准确值,因为把编程等待的时间一并算进去了,具体时间 以实际操作为标准。

5. 高级烧写

KFlashPro 提供数种高级烧写功能,可灵活满足您的可种烧写需要。这些功能列表如下。

多 Flash 编程:可添加多个 Flash 烧写算法

程序烧写				— ×
编程选项 ● 整片擦除 ● 扇区擦除 ● 不予擦除]编程Flash] 验证Flash] 代码相同跳过] 退出后运行	裝載) 起 模	¥法RAM 拾 ○×10000000 尺寸 式 用户板上的仿真端口	0x000008E0
编程算法				
编程描述	器件类型	器件尺寸	地址范围	器件ID
LPC18/43 512K(Bank A)+512K(片上器件	0x00100000	0x1A000000 - 0x1B080000	
HFDMgr MX29GL128EL 1*16MB	SPI器件 NOR16器件	0x08000000 0x01000000	0x1C000000 - 0x1C000000 0x1C000000 - 0x1D000000*	0x00C2227E
器件 格式 总线	选项] 配置	□编程配置	起始 0x1C000000	尺寸
添加硬件算法 ▼ 删除算法	±		确认	取消

- 一键烧写多个烧写片内/片外 Flash
- 开放编程算法接口,允许自定义烧写算法

灵活的 ID 号烧写功能

同启用ID号烧写功能(在烧写时在ID区域填充对应的ID号)						
ID号区域配置						
ID号地址对应的算法:	LPC18/43 512K(Bank A)+51 🔻				
ID号首地址(HEX):	0x0000000					
ID号末地址(HEX):	0x0000000					
ID号填充配置						
ID号当前值:	0x00					
自增步长:	1	自增方式:	16进制			
🔲 自减填充	🔽 由高地址开始填充	☑ 失败时不自增	/减(多机需要全重烧)			

 允许指定任意地址、初始值、自增方式,为产 品增加唯一序列号

完全自定义软件界面

- 隐藏界面上任意按钮、工具栏,界面定义自由化
- 降低生产人员使用难度,避免误操作,提高效率

一键多烧: 可添加任意数量烧写文件

选择烧写算法: 烧写文件列表	TMS320F2801	16K Words F ▼ 选择烧写文	件:
是否烧写该文件	文件类型	文件路径	
0	TI Coff file	C:\Users\lishutong\Docume	
☑ 1	Binary File	C:\Users\lishutong\Docume	
			删除
			上移
•		Þ	下移

- 支持 Hex/Bin/Out/Coff/ELF/AXF 等多种文件格式
- 可添加任意数量文件并指定烧写到任意地址

全自动量产烧写

批量控制			
☑ 使能批量控制	🔽 全自动上	下电检测	
批量控制操作:	烧写	•	
量产次数:	4294967295	稳定上电时间: 1	00
执行成功次数:	9	执行失败次数: 12	2

- 自动统计烧录次数;
- 预先设定烧写量,有效控制烧写产量
- 全自动上下电检测,无需软件操作

创新云烧录系统:保障固件安全

75°云烧录管理系统	REM2# 2013年4月28日 42期日 10月 日本 V 1.0.5
工程管理 🔊 云朱表言道 新台管理 约果管理	
[松素工程] [台建工程] [工程人员管理] [帮助]	
放迎使用	
实迎使用云使求管理系统。	
工程管理 一 该模块用于搜索现有工程。创建工程和分发工程、工程人员管理	夏等与工程紧密联系的工作。
云燥录管理 一 该模块用于工程下载、施写人员管理、施写实时检测等与换写	容容耿系的工作。
后台營理 一 该模块用于支持软件添加,目志管理等销险性设置。	
工程管理 一 该模块为管理员模块 .	
请选择相关模块进入操作。使用愉快(

- 加密工程、安全隔离固件
- 使用服务器统一管理和分发固件
- 统一管理,减少沟通和维护成本

©2013 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.

产品应用笔记

ZLG 致远电子

本小节主要介绍用户最关心的批量烧写功能,这也是 KFlashPro+AK100Pro-4P 区别区普 通烧写器最大的特点之一。其它高级功能的详细使用请见 KFlashPro 的使用手册。

5.1 量产烧写配置

点击如下图所示的的【高级配置】下的量产配置,进入量产配置界面。

	*	北星控制			1.0													
些 , 读取配置		☑ 使能批量控制		v	全目	动上1	▶电检	侧 1										
组合配置	×	批	烧与				•		_				_					
设备配置	×	量产次数:	4294	19672	95	ŧ	急定上	:电时)	间: 1	100			m	5				
高级配置	*	执行成功次数:	0			ł	丸行失	败次	数:0)			卮	功率	:	0.00	%	
12 工程配置																		
🔛 量产配置		多机通道设置																
ID号配置	E	□ 使能多机模式																
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		通道编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		■ 使能通道	\checkmark															
缓冲区域	*	主通道	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

图 5-1 量产配置界面

批量控制各项配置含义如下:

- 使能量产控制:选中表示下面的配置信息有效;
- 自动上下电检测:默认选中,检测到目标板上电时进行操作;不选中,可以使用 AK100Pro-4P 上的按钮来控制目标板的上电;
- 批量控制操作:提供烧写、校验、擦除、查空、读取、烧写校验、擦除查空、整片 擦除以及组合操作,组合操作可以在左
- 边的导向栏中设置,点击【组合操作】,可以将"烧写、校验、擦除、查空、读取"任意组合使用;
- 量产次数: 4 个通道总共的烧写次数;
- 稳定上电时间: 表示等待上电稳定的时间, 用户根据目标板的情况填写;
- 夏位批量控制:清除"执行成功次数"、"执行失败次数"和"成功率"的值。 多机模式各项配置含义如下:
- 使能多机模式:是否开启多机模式;
- 使能通道:选择连接的通道;
- 主通道:默认选择通道 1;
- 多机同步处理:选中表示所有通道同时进行烧写

默认只使用1路通道,我们可配置量产次数为100,使能通道1、2、3、4,同时打开4路进行烧写。

北量控制																
🗹 使能批量控制			全自	动上7	下电检	测										
批量控制操作:	烧写				•											
量产次数:	100			1	急定上	电时间	月:	100			m	s				
执行成功次数:	0			ł	丸行失	败次	数:0)			۶,	助率	:	0.00	%	
多机通道设置																
🗹 使能多机模式																
通道编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
■ 使能通道	\checkmark	\checkmark	\checkmark	\checkmark												
主通道	۲	\odot	\odot	\odot	\odot	\bigcirc	\odot									
														多机同	步处现	里

图 5-2 4 路同时烧写配置界面

以上设置完成后,点击操作栏的【自动量产】按钮即可。此时,软件会自动提示进行上 下电,操作人员只需要根据提示更换目标板,不需要操作软件,减少了操作步骤,提升量产 效率。

自动量产		
ALL	总次数:100,成功:8次,失败:0次	取消
1	请下电! 2-2	>
2	摘下电! 2-2	>
3	清下电! 2-2	>
4	·續下电! 2-2	>
	停止操作请	点击右侧X,查看日志请单击>

图 5-3 多机自动量产烧写界面

如果1拖4量产烧写的速度仍无法满足您的需求,可以将最多4台AK100Pro-4P级联在一起,构成1拖16烧写器。

6. 技术支持

使用 AK100Pro-4P 支持 STC 系列单片机中 15 系列, 12 系列, 11/10 系列和 90/89 系 列各芯片的烧写支持。如果你在使用过程中遇到相关问题,请联系我们。后续我们还将支持 更多新内核和新器件,保证您所用的编程器可用于烧写其它芯片。

7. 订购信息

如果您对 AK100Pro-4P 感兴趣, 欢迎联系我们。具体联系方式可以见本文后面的销售 与服务网络 (一)、销售与服务网络 (二)。

修订历史

版本	日期	人员	原因
V1.00	2014/07/25	许志辉	创建文档
V1.01	2014/08/19	许志辉	烧写做了改动